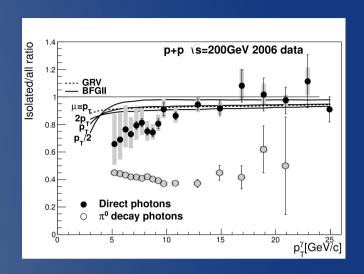
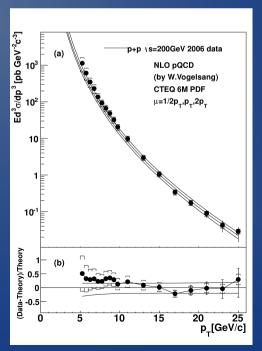
Direct Photon Measurements at PHENIX

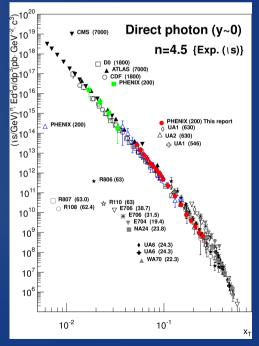
Hard Probes 2012 – Flash Talk Baldo Sahlmueller (for the PHENIX collaboration)

Why Measure Direct Photons?

- Au+Au (or Cu+Cu)
 - Do not interact strongly, traverse medium unaffected
 - Produced at every stage of the collision
 - High pT photons (mostly) from initial hard scattering, test of scaling behaviour w.r.t. p+p
 - Photons produced in medium probe QGP directly
- p+p
 - Test pQCD, direct access to initial 2->2 processes
 - Sensitive to gluon distribution in the proton (q+g → q+γ)
 - Important baseline for understanding other systems
- d+Au
 - Probe initial state, access to parton distribution functions
 - Important baseline for final state in Au+Au

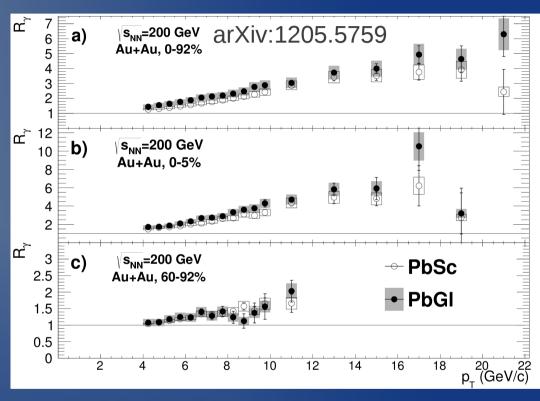





Results 1: direct photons in p+p

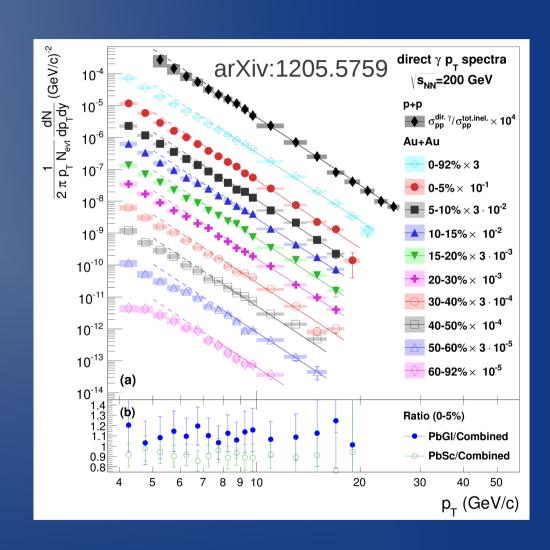
- Fraction of isolated photons is slightly rising at low p_T , flat at high p_T . It is consistent with pQCD calculation that predicts fraction of $\sim 90\%$
- ~40% of π⁰ decay photons pass isolation cut
- pQCD calculation is consistent with measured cross section
- x_T scaling behavior:
 - Scale cross sections from various p+p (p+pbar) with $\sqrt{s^{4.5}}$
 - All data on single universal curve, scaling consistent with NLO pQCD expectation

arXiv:1205.5533



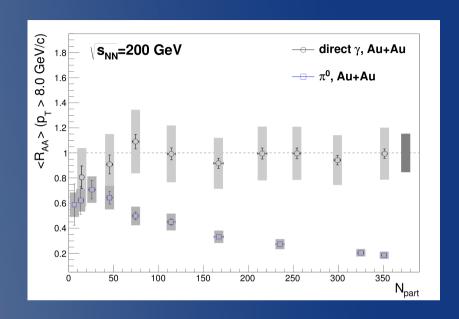
Results 2: Direct Photon Spectra

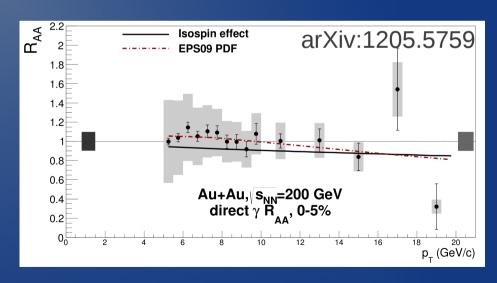
• Ratio $R_{\gamma} = (\gamma/\pi^0)_{data}/(\gamma/\pi^0)_{decayMC}$ shows direct photon signal as excess above 1



Results 2: Direct Photon Spectra

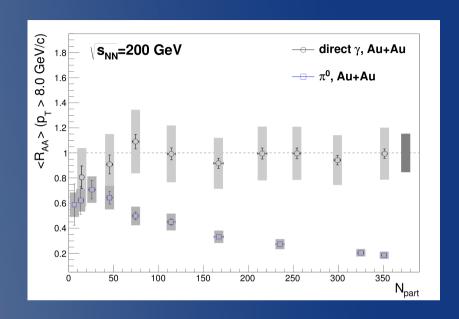
- Ratio $R_{\gamma} = (\gamma/\Pi^0)_{data}/(\gamma/\Pi^0)_{decayMC}$ shows direct photon signal as excess above 1
- Direct photons measured in p+p for 5 GeV/c<p_T<25 GeV/c, in Au+Au in 10 centralities for 4 GeV/c<p_T<22 GeV/c
- 2 independent analyses in Au+Au in good agreement
- Power law at high p_{T} , power for p+p is 7.08±0.09±0.1
- In Au+Au, power of 6.85±0.07±0.02, no apparent shape modification
- T_{AA} scaled fit to p+p shows that magnitude and shape in Au+Au agree with binary-scaled p+p

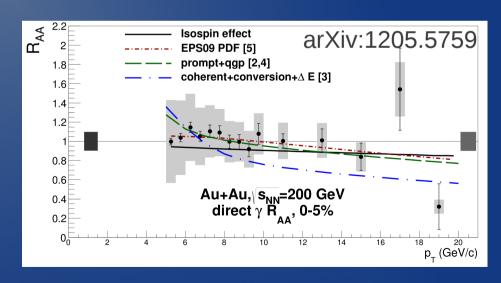




Results 3: R

- R_{AA} is consistent with 1 for all centralities
- π^0 is suppressed towards higher N_{part} , direct photons are not
- Comparisons with models for initial and final state effects
 - Initial state effects (IS) include isospin and nuclear PDF, consistent with data



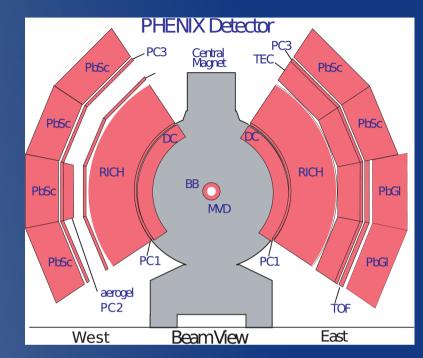


Results 3: R

- R_{AA} is consistent with 1 for all centralities
- Π^0 is suppressed towards higher N_{part} , direct photons are not
- Comparisons with models for initial and final state effects
 - Initial state effects (IS) include isospin and nuclear PDF, consistent with data
 - Final state effects (FS) include suppression of jet fragmentation photons and photons from jetplasma interaction, consistent with data
 - Another model with both IS and FS disagrees with data

Summary and Outlook

- PHENIX has measured direct photons in p+p and Au+Au (amongst others)
- Observed power law behavior of cross section in both systems at high pT
- pQCD prediction agrees with p+p measurement, universal xT scaling behavior of photons was found
- In Au+Au, direct photons show no suppression or enhancement, RAA consistent with unity
- Theoretical models for IS agree with data, FS prediction including QGP effects also consistent with data (however, another model in disagreement)
- Future measurements: d+Au with 2008 data (study IS), lower energy Au+Au with 2010 data (clearer isospin effect picture?)


Thank You!

Method overview

- Used statistical methods
 - Measure all photons
 - Subtract hadrons/leptons from calorimeter spectrum
 - Correct for acceptance/efficiency
 - Simulate decay photons
 - Use measured Π^0 , M_{\perp} scale other mesons
 - Subtract decay photons via so-called double ratio $R_{\gamma} = (\gamma/\pi^0)_{data}/(\gamma/\pi^0)_{decayMC}$
 - Direct photon spectrum is $\gamma_{dir} = (1-1/R_{\gamma})\gamma_{incl}$
- Variation of method
 - Simulate calorimeter answer to decay photons, subtract raw clusters, correct remaining direct photon sample for detector effects
- Further improvements in p+p
 - Tagging of Π^0 decay photons
 - Isolation cut applied

- PHENIX detector
 - EMCal (PbGl, PbSc) for photon measurement
 - PC3 for charged particle rejection
 - BBC, ZDC for event characterization